Revisión de las topologías de convertidores de corriente continua para generación solar fotovoltaica

Autores/as

  • Kumar Mahtani Universidad Politécnica de Madrid

DOI:

https://doi.org/10.56124/cct.v2i2.012

Palabras clave:

convertidor buck, convertidor buck-boost, convertidor Cuk, convertidores DC-DC, convertidor flyback, convertidor Zeta, eficiencia energética, energía solar, energías renovables, MPPT, SEPIC, sistemas fotovoltaicos

Resumen

La conversión eficiente de la energía solar en energía eléctrica es un aspecto fundamental de los sistemas fotovoltaicos (FV), y la elección del convertidor de corriente continua (CC) que sirve de etapa intermedia desempeña un papel crucial en la optimización del rendimiento, la eficiencia y la fiabilidad. En este artículo se examinan en profundidad varias topologías de convertidores CC-CC utilizadas en aplicaciones solares fotovoltaicas, como los convertidores buck, boost, buck-boost, Cuk, Zeta, SEPIC y flyback. Cada convertidor se analiza en función de sus principios de funcionamiento, ventajas, limitaciones y adecuación a distintas configuraciones de sistemas fotovoltaicos. El artículo también explora el impacto de estos convertidores en la eficiencia de la conversión de potencia, la regulación de la tensión, la minimización del rizado de corriente y la estabilidad del sistema, abordando los retos que plantean las fluctuantes condiciones ambientales. Mediante la comparación y el contraste de estas topologías de convertidores, esta revisión ofrece información valiosa para investigadores, ingenieros y profesionales de la industria que buscan optimizar los sistemas fotovoltaicos solares para una mayor eficiencia y una mejor integración con la red. Los resultados ponen de relieve la importancia de seleccionar el convertidor CC-CC adecuado para mejorar el rendimiento y la fiabilidad generales de los sistemas de energías renovables, contribuyendo así al avance continuo de la generación de energía sostenible.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aghdam, F. H., & Abapour, M. (2016). Reliability and cost analysis of multistage boost converters connected to PV panels. IEEE Journal of Photovoltaics, 6(4), 981–989.

Ardi, H., & Ajami, A. (2018). Study on a high voltage gain SEPIC-based DC–DC converter with continuous input current for sustainable energy applications. IEEE Transactions on Power Electronics, 33(12), 10403–10409.

Azer, P., & Emadi, A. (2020). Generalized state space average model for multi-phase interleaved buck, boost and buck-boost DC-DC converters: Transient, steady-state and switching dynamics. IEEE Access, 8, 77735–77745.

Banaei, M. R., & Bonab, H. A. F. (2017). A novel structure for single-switch nonisolated transformerless buck–boost DC–DC converter. IEEE Transactions on Industrial Electronics, 64(1), 198–205.

Banaei, M. R., & Bonab, H. A. F. (2020). A high efficiency nonisolated buck–boost converter based on ZETA converter. IEEE Transactions on Industrial Electronics, 67(3), 1991–1998.

Blaabjerg, F., Yang, Y., Kim, K. A., & Rodriguez, J. (2023). Power electronics technology for large-scale renewable energy generation. Proceedings of the IEEE, 111(4), 335–355.

Cao, Y., Li, K., & Lu, M. (2021). Balancing method based on flyback converter for series-connected cells. IEEE Access, 9, 52393–52403.

Chen, D., & Hu, X. (2023). A multiobjective feedback linearization control of a Cuk converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(3), 2990–2999.

Dileep, G., & Singh, S. N. (2017). Selection of non-isolated DC-DC converters for solar photovoltaic system. Renewable and Sustainable Energy Reviews, 76, 1230–1247.

Gaubert, J.-P., & Chanedeau, G. (2009). Evaluation of DC-to-DC converters topologies with quadratic conversion ratios for photovoltaic power systems. 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 1–10.

Heydari, M., Khoramikia, H., & Fatemi, A. (2019). High-voltage gain SEPIC-based DC–DC converter without coupled inductor for PV systems. IET Power Electronics, 12(8), 2118–2127.

Huang, Q., Huang, A. Q., Yu, R., Liu, P., & Yu, W. (2019). High-efficiency and high-density single-phase dual-mode cascaded buck–boost multilevel transformerless PV inverter with GaN AC switches. IEEE Transactions on Power Electronics, 34(8), 7474–7488.

Ibarra, E., Arias, A., de Alegría, I. M., Otero, A., & de Mallac, L. (2022). Digital control of multiphase series capacitor buck converter prototype for the powering of HL-LHC inner triplet magnets. IEEE Transactions on Industrial Electronics, 69(10), 10014–10024.

Jiang, T., Zhang, S., Xie, J., Fan, J., Yang, C., & Han, X. (2024). A coupled L-LC filter for interleaved buck converter ripple cancellation. IEEE Transactions on Power Electronics, 39(5), 6028–6039.

Kanouni, B., Badoud, A. E., & Mekhilef, S. (2023). Design of super twisting MPPT controller using DC-DC ZETA converter. In Proceedings of the 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia (pp. 951–956).

Kapat, S. (2019). Sampling-induced border collision bifurcation in a voltage-mode DPWM synchronous buck converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), 1048–1052.

Liang, T.-J., Cheng, M.-H., Huang, W.-Y., & Tseng, W.-J. (2019). Interleaved half-bridge flyback converter with zero-current switching. IEEE Transactions on Power Electronics, 34(4), 3370–3383.

Li, Y., Dobbins, B. L., & Stauth, J. T. (2021). An optically powered, high-voltage, switched-capacitor drive circuit for microrobotics. IEEE Journal of Solid-State Circuits, 56(3), 866–875.

Lu, C., Shanthi, N., Nivethitha, P., Sindhuja, S., Hilasini, M., & Divyabharathi, K. (2018). High efficient interleaved boost converter for photovoltaic applications. In Proceedings of the International Conference on Computing, Power, Energy, and Information Communication, Chennai, India (pp. 305–309).

Ma, W., et al. (2019). Hopf bifurcation and its control in the one-cycle controlled Cuk converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(8), 1411–1415.

Monteiro, J., Fernão Pires, V., Foito, D., Cordeiro, A., Fernando Silva, J., & Pinto, S. (2023). A buck-boost converter with extended duty-cycle range in the buck voltage region for renewable energy sources. Electronics, 12(3), 584.

Morey, M., Gupta, N., Garg, M. M., & Kumar, A. (2023). A comprehensive review of grid-connected solar photovoltaic system: Architecture, control, and ancillary services. Renewable Energy Focus, 45, 307–330.

Pesce, C., Riedemann, J., Peña, R., Degano, M., Pereda, J., Villalobos, R., Maury, C., & Andrade, I. (2021). A modified multi-winding DC–DC flyback converter for photovoltaic applications. Applied Sciences, 11(24), 11999.

Pourasl, H. H., Barenji, R. V., & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474–3493.

Raghavendra, K. V. G., Zeb, K., Muthusamy, A., Krishna, T. N. V., Kumar, S. V. S. V. P., Kim, D.-H., Kim, M.-S., Cho, H.-G., & Kim, H.-J. (2020). A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics, 9(31), 1–31.

Ramos-Paja, C. A., Gonzalez-Motoya, D., Villegas-Seballos, J. P., Serna-Garces, S. I., & Giral, R. (2021). Sliding-mode controller for a photovoltaic system based on a Cuk converter. International Journal of Electrical and Computer Engineering (IJECE), 11(3), 2027–2044.

Rezvanyvardom, M., & Mirzaei, A. (2020). High gain configuration of modified ZVT SEPIC-boost DC-DC converter with coupled inductors for photovoltaic applications. Solar Energy, 208, 357.

Saha, P., Rahman, T., & Yeaser, K. M. A. (2023). Design and comparative analysis of robust non-inverting DC-DC buck-boost converters: Exploring three distinct configurations for optimal performance. In Proceedings of the 5th International Conference on Sustainable Technologies for Industry 5.0 (STI), Dhaka, Bangladesh (pp. 1–6).

Son, H.-S., Kim, J.-K., Lee, J.-B., Moon, S.-S., Park, J.-H., & Lee, S.-H. (2017). A new buck–boost converter with low-voltage stress and reduced conducting components. IEEE Transactions on Industrial Electronics, 64(9), 7030–7038.

Spiazzi, G., & Buso, S. (2021). Extended analysis of the asymmetrical half-bridge flyback converter. IEEE Transactions on Power Electronics, 36(7), 7956–7964.

Umapathi, K., Kathiravan, G., & Usha, P. (2023). Design and development of INC-MPPT switched ZETA converter for solar PV arrays. In Proceedings of the 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India (pp. 1434–1438).

Wu, H., Mu, T., Ge, H., & Xing, Y. (2016). Full-range soft-switching-isolated buck-boost converters with integrated interleaved boost converter and phase-shifted control. IEEE Transactions on Power Electronics, 31(2), 987–999.

Zidane, T. E. K., et al. (2023). Grid-connected solar PV power plants optimization: A review. IEEE Access, 11, 79588–79608.

Zhang, X., & Xiao, X. (2021). A new approach to fault detection and diagnosis of DC-DC converters for photovoltaic applications. IEEE Transactions on Industrial Electronics, 68(6), 4898–4907.

Archivos adicionales

Publicado

31-12-2024

Cómo citar

Mahtani, K. (2024). Revisión de las topologías de convertidores de corriente continua para generación solar fotovoltaica. Chone, Ciencia Y Tecnología, 2(2). https://doi.org/10.56124/cct.v2i2.012

Artículos similares

1-10 de 28

También puede Iniciar una búsqueda de similitud avanzada para este artículo.