Revisión de las topologías de convertidores de potencia plena para sistemas de conversión de energía eólica basados en generadores síncronos de imanes
DOI:
https://doi.org/10.56124/cct.v2i2.015Palabras clave:
convertidores de fuente Z, Aerogeneradores, convertidores de nueve conmutadores, convertidores de seis conmutadores, convertidores matriciales, convertidores multinivel, integración en red, PMSG, rectificadores de diodos, rectificadores Vienna, sistemas eólicos tipo 4Resumen
Este artículo ofrece una revisión general de las topologías de convertidores utilizadas en los sistemas de conversión de energía eólica de Tipo 4 con generadores síncronos de imanes permanentes (PMSG). Los sistemas de Tipo 4 basados en convertidores back-to-back de plena potencia pueden funcionar para maximizar el rendimiento de los aerogeneradores para la velocidad variable del viento, facilitar el desacoplamiento de la red y reducir las necesidades de mantenimiento. El artículo compara distintas configuraciones de convertidores, como los rectificadores de diodos, convertidores de seis conmutadores, rectificadores Viena, convertidores de fuente Z, convertidores de nueve conmutadores, convertidores multinivel y convertidores matriciales, y describe sus principios de funcionamiento, ventajas e inconvenientes. Cada topología se ha estudiado con respecto a su eficiencia, fiabilidad, calidad de potencia, coste y aplicabilidad a los sistemas de energías renovables. Los resultados subrayan el papel fundamental que desempeña la electrónica de potencia en la introducción en el mercado de nuevas generaciones de dispositivos de energía eólica y orientan en la elección de la topología de convertidor óptima para ofrecer una conversión de energía fiable, eficiente y económicamente atractiva en los esquemas contemporáneos de conversión de energía eólica.
Descargas
Referencias
Abdel-Rahim, O., Abu-Rub, H., & Kouzou, A. (2013). Nine-to-three phase direct matrix converter with model predictive control for wind generation system. Energy Procedia, 42, 173–182.
Abdel-Rahim, O., Funato, H., Abu-Rub, H., & Ellabban, O. (2014). Multiphase wind energy generation with direct matrix converter. IEEE International Conference on Industrial Technology (ICIT), 519–523.
Ahmed, H., & Çelik, D. (2022). Sliding mode-based adaptive linear neuron proportional resonant control of Vienna rectifier for performance improvement of electric vehicle charging system. Journal of Power Sources, 542, 231788.
Ahmed, M. H., Fei, C., Lee, F. C., & Li, Q. (2020). Single-stage high-efficiency 48/1 V sigma converter with integrated magnetics. IEEE Transactions on Industrial Electronics, 67(1), 192–202.
Alizadeh, M., & Kojori, S. S. (2018). Small-signal stability analysis and predictive control of Z-source matrix converter feeding a PMSG-WECS. International Journal of Electrical Power & Energy Systems, 95, 601–616.
Antar, R. K., Saied, B. M., Putrus, G. A., & Khalil, R. A. (2021). Treating the impacts of connecting HVDC link converters with AC power system using real-time active power quality unit. e-Prime - Advances in Electrical Engineering and Electronics Energy, 1, 100013.
Balbino, A. J., de Souza Nora, B., & Lazzarin, T. B. (2022). An improved mechanical sensorless maximum power point tracking method for permanent-magnet synchronous generator-based small wind turbines systems. IEEE Transactions on Industrial Electronics, 69(5), 4765–4775.
Bhaskar, M., Padmanaban, S., Almakhles, D. J., Gupta, N., & Subramaniam, U. (2022). Double-switch switched-inductor converter with minimal switch voltage stress for renewable energy conversion. Computers and Electrical Engineering, 98, 107682.
Catalán, P., Wang, Y., Arza, J., & Chen, Z. (2023). A comprehensive overview of power converter applied in high-power wind turbine: Key challenges and potential solutions. IEEE Transactions on Power Electronics, 38(5), 6169–6195.
De Freitas, T. R., Menegáz, P. J., & Simonetti, D. S. (2016). Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review. Renewable and Sustainable Energy Reviews, 54, 1334–1344.
Dehghanzadeh, A. R., Behjat, V., & Banaei, M. R. (2016). Double input Z-source inverter applicable in dual-star PMSG-based wind turbine. International Journal of Electrical Power & Energy Systems, 82, 49–57.
Desalegn, B., Gebeyehu, D., & Tamrat, B. (2022). Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review. Heliyon, 8(11), e11263.
Deng, F., Chen, Y., Dou, J., Liu, C., Chen, Z., & Blaabjerg, F. (2022). Isolation forest-based submodule open-circuit fault localization method for modular multilevel converters. IEEE Transactions on Industrial Electronics, 1–1.
Diaz, M., Cardenas, R., Espinoza, M., Rojas, F., Mora, A., Clare, J. C., & Wheeler, P. (2017). Control of wind energy conversion systems based on the modular multilevel matrix converter. IEEE Transactions on Industrial Electronics, 64(11), 8799–8810.
Duan, T., Cheng, T., & Dinavahi, V. (2020). Heterogeneous real-time co-emulation for communication-enabled global control of AC/DC grid integrated with renewable energy. IEEE Open Journal of the Industrial Electronics Society, 1, 261–270.
Eroğlu, F., Kurtoğlu, M., Eren, A., & Vural, A. M. (2023). A novel adaptive state-of-charge balancing control scheme for cascaded H-bridge multilevel converter-based battery storage systems. ISA Transactions, 135, 339–354.
Goodwin, G. C., Seron, M. M., & Mirzaeva, G. (2023). A novel control strategy for matrix converters based on transient power balance. Automatica, 153, 111027.
Gong, Z., Zhang, H., Dai, P., Sun, N., & Li, M. (2019). A low-cost phase-angle compensation method for the indirect matrix converters operating at the unity grid power factor. IEEE Transactions on Power Electronics, 34(10), 10314–10326.
Gulbudak, O., & Gokdag, M. (2021). Finite control set model predictive control approach of nine switch inverter-based drive systems: Design, analysis, and validation. ISA Transactions, 110, 283–304.
Gulbudak, O., Gokdag, M., & Komurcugil, H. (2023). Lyapunov-based model predictive control of dual-induction motors fed by a nine-switch inverter to improve the closed-loop stability. International Journal of Electrical Power & Energy Systems, 146, 108718.
Iqbal, A., Ahmed, S. M., & Abu-Rub, H. (2012). Space vector PWM technique for a three-to-five-phase matrix converter. IEEE Transactions on Industry Applications, 48(2), 697–707.
Jahangiri, A., & Radan, A. (2013). Indirect matrix converter with unity voltage transfer ratio for AC to AC power conversion. Electric Power Systems Research, 96, 157–169.
Kumar, V., Joshi, R., & Bansal, R. (2014). Experimental evaluation of matrix converter for wind energy conversion system under various abnormal conditions. International Journal of Renewable Energy Research, 4(1), 15–22.
Kumari, A., Gopal, Y., Dhaked, D. K., Panda, K. P., & Kumar, Y. V. (2023). A single-source five-level switched-capacitor-based multilevel inverter with reduced device count. e-Prime - Advances in Electrical Engineering and Electronics Energy, 5, 100235.
Le, X. C., Duong, M. Q., & Le, K. H. (2023). Review of the modern maximum power tracking algorithms for permanent magnet synchronous generator of wind power conversion systems. Energies, 16(402).
Lee, J. S., Lee, K. B., & Blaabjerg, F. (2019). Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems. IEEE Transactions on Power Electronics, 34(12), 12368–12383.
Li, H., Deng, F., Zhao, J., Tian, J., Lu, Y., & Li, G. (2023). Variable sampling frequency-based SM power losses balancing control for MMCs with bypassed faulty SMs. IEEE Transactions on Power Electronics, 1–12.
Morgan, E. F., Abdel-Rahim, O., Megahed, T. F., Suehiro, J., & Abdelkader, S. M. (2022). Fault ride-through techniques for permanent magnet synchronous generator wind turbines (PMSG-WTGs): A systematic literature review. Energies, 15(9116).
Mudholker, A., Menghal, P., & Laxmi, A. (2015). SVPWM-based converter for PMSG-based wind energy conversion system. Procedia Computer Science, 70, 676–682.
Muduli, U. R., Behera, R. K., Hosani, K. A., & Moursi, M. S. E. (2022). Direct torque control with constant switching frequency for three-to-five phase direct matrix converter-fed five-phase induction motor drive. IEEE Transactions on Power Electronics, 37(9), 11019–11033.
Nabatirad, M., Razzaghi, R., & Bahrani, B. (2023). Autonomous power balance in hybrid AC/DC microgrids. International Journal of Electrical Power & Energy Systems, 146, 108752.
Olloqui, A., Elizondo, J. L., Rivera, M., Macías, M. E., Micheloud, O. M., Pena, R., & Wheeler, P. (2021). Model-based predictive rotor current control strategy for indirect power control of a DFIM driven by an indirect matrix converter. IEEE Transactions on Energy Conversion, 36(2), 1510–1516.
Palanimuthu, K., Mayilsamy, G., Lee, S. R., Jung, S. Y., & Joo, Y. H. (2022). Comparative analysis of maximum power extraction and control methods between PMSG- and PMVG-based wind turbine systems. International Journal of Electrical Power & Energy Systems, 143, 108475.
Qin, C., & Li, X. (2022). Improved control scheme for simultaneous reduction of common-mode voltage and current harmonic distortion of the Vienna-type rectifier with balanced and unbalanced neutral-point voltages. ISA Transactions, 131, 415–426.
Rahimi, M. (2017). Modeling, control, and stability analysis of grid-connected PMSG-based wind turbine assisted with diode rectifier and boost converter. International Journal of Electrical Power & Energy Systems, 93, 84–96.
Rafin, S. M. S. H., Islam, R., & Mohammed, O. A. (2023). Power electronic converters for wind power generation. In Proceedings of the 2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM) (pp. 1–8). Miami, FL, USA.
Saad, N. H., El-Sattar, A. A., & Marei, M. E. (2018). Improved bacterial foraging optimization for grid-connected wind energy conversion system-based PMSG with matrix converter. Ain Shams Engineering Journal, 9(4), 2183–2193.
Saleh, S., St. Onge, X., McGivney, W., & McLeod, J. (2017). A new multi-level AC-DC power electronic converter for applications in PMG-based WECSs. 2017 IEEE/IAS 53rd Industrial and Commercial Power Systems Technical Conference (ICPS), 1–9.
Shahni, A., Qazi, S. H., Kaloi, G. S., & Ullah, R. (2019). Review on performance analysis of SCIG- and PMSG-based wind energy conversion systems. SSRG International Journal of Electronics and Communication Engineering, 6(7), 1–10.
Sivapriya, A., & Kalaiarasi, N. (2023). A novel enhanced deep learning-based fault diagnosis approach for cascaded multilevel inverter. e-Prime - Advances in Electrical Engineering and Electronics Energy, 5, 100253.
Tawfiq, K. B., Mansour, A. S., Ramadan, H. S., Becherif, M., & El-kholy, E. (2019). Wind energy conversion system topologies and converters: Comparative review. Energy Procedia, 162, 38–47.
Wang, K., Wu, F., Su, J., & Wang, G. (2023). Three-phase single-stage three-port high-frequency isolated DC-AC converter. IEEE Transactions on Power Electronics, 38(9), 11113–11124.
Wilamowski, B. M., & Irwin, J. D. (2018). Power electronics and motor drives. CRC Press.
Xu, Y., Wang, Z., Liu, P., Wei, Q., Deng, F., & Zou, Z. (2022). The modular current-fed high-frequency isolated matrix converters for wind energy conversion. IEEE Transactions on Power Electronics, 37(4), 4779–4791.
Xiao, Q., Mu, Y., Jia, H., Jin, Y., Yu, X., Teodorescu, R., & Guerrero, J. M. (2022). Novel modular multilevel converter-based five-terminal MV/LV hybrid AC/DC microgrids with improved operation capability under unbalanced power distribution. Applied Energy, 306, 118140.
Zhang, Q., He, J., Xu, Y., Hong, Z., Chen, Y., & Strunz, K. (2022). Average-value modeling of direct-driven PMSG-based wind energy conversion systems. IEEE Transactions on Energy Conversion, 37(1), 264–273.
Archivos adicionales
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Kumar Mahtani
Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0.
Protección intelectual y licencia. La Revista y cada uno de los artículos y ensayos que se publican están licenciados por Creative Commons 3.0 Ecuador (CC), que establece: "Atribución - No Comercial - Sin Derivadas", lo cual indica que:
- Compartir: el material puede ser distribuido, copiado y exhibido por terceros siempre que se le atribuya el crédito al autor/a.
- Atribución: El autor debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No comercial: No se puede hacer uso del material con propósitos comerciales.
- SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Lectores (as). La Revista permite la posibilidad de que los lectores o lectoras puedan, de forma gratuita, descargar, almacenar, copiar y distribuir la versión final aprobada y publicada (post print) del artículo, siempre y cuando se realice sin fines comerciales, no se generen obras derivadas y se mencione la fuente y autoría de la obra.
Autores (as). La Revista permite la publicación del post-print en repositorios y sitios web. La Revista coloca a disponibilidad los artículos, en repositorios de terceros, inmediatamente después de su publicación.